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The Team

Christopher Ferraro — Pl

Dr. Ferraro is an expert in in mass concrete,
alternative supplementary cementitious
materials, and concrete mixture design and
evaluation.

Kyle Riding — Co PI

Dr. Riding is an expert in concrete mixture
design, durability testing, early-age structural
behavior, microstructural characterization,
and novel cementitious systems.

Ashish Patel

Mr. Patel is leading all of the physical
experimentation in the cement and concrete
labs at the University of Florida.

years 01 experience.

Jim Baciak — Co Pl

Dr. Baciak has extensive experience with
characterization of gamma-ray spectroscopy,
detector testing, as well as development and
analysis of sampling techniques.

Jerry Paris

Dr. Jerry Paris is an expert in concrete
mixture designs implementing alternative
supplementary cementitious materials with
a background in cement hydration chemistry
and durability experimentation.
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Problem: ASR in Aging Nuclear Power Plants
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Kreitman, K., 2011, U.T. Theses and Dissertations, 148 pp.
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Potential Cause: Neutron Irradiation and ASR

* RIVE-assisted ASR is a neutron fluence-

Fast Neutron

driven phenomenon ® ® o o
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« Collisions with energetic neutrons induce el
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lattice disorder in silicate minerals and ®
causes aggregates to swell (i.e., RIVE) ® ©© o:0
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« Siliceous aggregate reactivity increases as Vacant Displaced Atom Subsequently
a function Of R|VE Position Displaces many others
Walters, L. et al. 18th International Symposium on Zirconium in the Nuclear
Industry
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Design Methodology

Application of new technology is dependent on use case:

New Retrofit — Service

Construction Life Extension
Provides combined
neutron shielding and <
ASR mitigation

Provides highly
efficient thin shielding
to halt further damage
from service life
extension
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New Construction Solution: Finely Dispersed Boron Admixture
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Cross-section of concrete with
finely dispersed boron in paste
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Project Objectives

ALCURSIICCIN - Specimens to be irradiated in UFTR
Reactivity

Mitigation « Exposure conditions: thermal and fast neutron fluences of ~10'8 neutrons/cm?

» Replicate specimens exposed to same temperature-time history

A N « Goal is to differentiate microstructural changes due to irradiation and
' | temperature effects

L' » Petrographic examination
| « Boron transmutation releases relatively large amounts of localized energy
! » Important to characterize the type and extent of damage due to transmutation

 Lithium detection using atom probe tomography and dynamic secondary ion mass
spectroscopy

« If lithium is detectable, these tools will help determine its quantity and distribution
within the irradiated specimens

« Absorbed dose measurements due to thermal and fast neutrons using UFTR
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Neutron Shielding Efficiency
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Challenges and Risks

* Unresolved challenge:
« Unknown how microstructural damage due to boron transmutation into lithium
translates to the macroscale

* Longer-term irradiation or irradiation under high flux may be necessary to
adequately determine damage propagation in systems with boron

* Resolved challenges:
« Boron is less effective at neutron capture at higher neutron energies

« Modifications to boron admixture significantly enhances neutron capture
efficiency
« Limited access between reactor vessel and biological shield for effective
retrofit application
* Thin system admixture can significantly reduce shield size while
maintaining high shielding efficiency
\il |)\i
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Potential Partnerships

* UFTR is a 100 kW (1.8 x 102 n/cmz2-sec) reactor that
can offer
« Sample Irradiations
Neutron Activation Analysis
Neutron Beam Port Use
Real-time Neutron Radiography
Detection System Use

* RJ Lee Group — microscopy and petrography
(optical/SEM/EBSD), analytical chemistry, failure
analysis, material characterization

* Team composition is very broad: academia, industry,
electric power industry funded research
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Summary Slide

e Admixtures designed for concrete and thin shields allow for considerable size
reduction without negatively affecting shielding efficiency

Radiological Concrete — 20 cm

* On-going goals include:

« Assessing irradiation-induced e
microstructural damage and tracking : -
transmuted lithium in irradiated S
SpeCimenS - Neutron flux y

 Establishing a supplier-customer | —
relationship between next-gen NPP ) —
OEM and concrete admixture , * — -
producer .

Proposed System — 1 cm
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http://www.arpa-e.energy.gov/
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How Minerology Characteristics Correlate to Expansion Test Results

> Petrographic Results of Reactive Components of Aggregate Tested

N. Carolina Coarse Aggregate Texas Sand
Microcrystalline quartz in Amorphous Glass or
sedimentary rock - cryptocrystalline from volcanics
mudstone/siltstone (rhyolites and dacites, pumice)

Strained Quartz (granite)

Cryptocrystalline Quartz (chert/flint)

> Effect of rock density and porosity, crushing?

> Pessimum effect and/or chemistry of system?

> Lithium mitigation mechanism need further evaluation
> Post expansion mortar bar petrography
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Mechanism by which LiNO; Mitigates ASR

> Mechanism still not well understood

> Amount of lithium nitrate needed to mitigate ASR has been identified as
a function of the sodium oxide equivalent of pore solution and generally
identified as Li:(Na+K) = 0.74

> The effectiveness of LiNO4 varies with the concrete alkali content and
the type of reactive aggregate to counteract (regardless of the
aggregate reactivity), and its petrographic nature.

> Most likely mechanism is the reduction/suppression of silica
dissolution in the aggregate.

— Reason unknown, but some indication of a protective shell around certain
aggregate limiting dispersion of dissolved silica.
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Mortar Bars Examined Post C1260 Testing NC and Tx Aggregate

Control with 1500 g/m3 9B and 1500 g/m? 9B and 80 years of transmuted Li

Expansion correlates with gel formation. More ASR gel and cracking in the Control specimens as
compared to the Li dosed.

Aggregates in the NC samples were cracked with gel within the cracks in aggregate and into the
paste. No ASR rims.

> The Texas aggregate showed ASR rims forming around aggregate, especially in the Li as compared
with the control.

> All the NC aggregate was crushed while the Tx sand could have naturally sized particles included
in the testing.

— Tx aggregate showed completely reacted chert sand grains with no expansion in the Li
samples.

> Observations indicate the silica dissolution of the aggregate, porosity of aggregate, and particle
size pessimum effect are likely reason for difference in LiNO;

— NC aggregate more porous and more silica dissolution was observed.

— Tx aggregate showed potential pessimum effect and ASR gel rims, and reaction confined
within aggregate.
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NC Coarse Aggregate
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Texas Fine Aggregate
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